|
golib
0.5
|
Eigenvalue computation of real matrices. More...
#include <goeigenvalue.h>
Public Member Functions | |
| Eigenvalue (const goMath::Matrix< Real > &A) | |
| void | getV (goMath::Matrix< Real > &V_) |
| const goMath::Matrix< Real > & | getV () const |
| goMath::Matrix< Real > & | getV () |
| goMath::Vector< Real > & | getRealEigenvalues () |
| const goMath::Vector< Real > & | getRealEigenvalues () const |
| goMath::Vector< Real > & | getImagEigenvalues () |
| const goMath::Vector< Real > & | getImagEigenvalues () const |
| void | getRealEigenvalues (goMath::Vector< Real > &d_) |
| void | getImagEigenvalues (goMath::Vector< Real > &e_) |
| void | getD (goMath::Matrix< Real > &D) |
Eigenvalue computation of real matrices.
This is taken directly from the JAMA library from NIST (http://math.nist.gov/tnt/). The class was renamed to fit the local conventions and uses goMath::Matrix and goArray classes instead of the TNT::Array{1,2}D classes.
Computes eigenvalues and eigenvectors of a real (non-complex) matrix.
If A is symmetric, then A = V*D*V' where the eigenvalue matrix D is diagonal and the eigenvector matrix V is orthogonal. That is, the diagonal values of D are the eigenvalues, and V*V' = I, where I is the identity matrix. The columns of V represent the eigenvectors in the sense that A*V = V*D.
If A is not symmetric, then the eigenvalue matrix D is block diagonal with the real eigenvalues in 1-by-1 blocks and any complex eigenvalues, a + i*b, in 2-by-2 blocks, [a, b; -b, a]. That is, if the complex eigenvalues look like
u + iv . . . . .
. u - iv . . . .
. . a + ib . . .
. . . a - ib . .
. . . . x .
. . . . . y
then D looks like
u v . . . .
-v u . . . .
. . a b . .
. . -b a . .
. . . . x .
. . . . . y
This keeps V a real matrix in both symmetric and non-symmetric cases, and A*V = V*D.
The matrix V may be badly conditioned, or even singular, so the validity of the equation A = V*D*inverse(V) depends upon the condition number of V.
(Adapted from JAMA, a Java Matrix Library, developed by jointly by the Mathworks and NIST; see http://math.nist.gov/javanumerics/jama).
|
inline |
Check for symmetry, then construct the eigenvalue decomposition
| A | Square real (non-complex) matrix |
|
inline |
Computes the block diagonal eigenvalue matrix. If the original matrix A is not symmetric, then the eigenvalue matrix D is block diagonal with the real eigenvalues in 1-by-1 blocks and any complex eigenvalues, a + i*b, in 2-by-2 blocks, [a, b; -b, a]. That is, if the complex eigenvalues look like
u + iv . . . . .
. u - iv . . . .
. . a + ib . . .
. . . a - ib . .
. . . . x .
. . . . . y
then D looks like
u v . . . .
-v u . . . .
. . a b . .
. . -b a . .
. . . . x .
. . . . . y
This keeps V a real matrix in both symmetric and non-symmetric cases, and A*V = V*D.
| D | upon return, the matrix is filled with the block diagonal eigenvalue matrix. |
|
inline |
Return the imaginary parts of the eigenvalues in parameter e_.
@pararm e_: new matrix with imaginary parts of the eigenvalues.
|
inline |
Return the real parts of the eigenvalues
|
inline |
Return the eigenvector matrix