golib  0.5
goMath::BarrierOptFunctionPhase1< matrix_type, vector_type > Class Template Reference

Public Types

typedef BarrierOptFunction< matrix_type, vector_typeparent
 
typedef matrix_type::value_type value_type
 
- Public Types inherited from goMath::BarrierOptFunction< matrix_type, vector_type >
typedef OptFunction< matrix_type, vector_type >::value_type value_type
 
typedef OptFunction< matrix_type, vector_typefunction_type
 
- Public Types inherited from goMath::OptFunction< matrix_type, vector_type >
typedef vector_type::value_type value_type
 Value of the matrix and vector types matrix_type and vector_type.
 

Public Member Functions

 BarrierOptFunctionPhase1 (double eps=0.01)
 
virtual value_type barrier (const vector_type &x_s)
 Barrier function $ \Phi $. More...
 
virtual value_type operator() (const vector_type &x_s)
 Calculate $ t \cdot s + \Phi(x) $. More...
 
virtual void grad (vector_type &x_s, vector_type &ret)
 Calculate the gradient of f at x. More...
 
virtual void hessian (vector_type &x_s, matrix_type &ret)
 Calculate the Hessian of f at x. More...
 
- Public Member Functions inherited from goMath::BarrierOptFunction< matrix_type, vector_type >
 BarrierOptFunction (double eps=0.01)
 
void setT (value_type t)
 
value_type t () const
 
void setProblem (goAutoPtr< OptProblem< matrix_type, vector_type > > p)
 
virtual void hessian (vector_type &x, matrix_type &ret)
 
void barrierGradHessian (const vector_type &x, vector_type &grad, matrix_type &hess)
 
goAutoPtr< OptProblem< matrix_type, vector_type > > problem ()
 

Additional Inherited Members

- Protected Member Functions inherited from goMath::OptFunction< matrix_type, vector_type >
 OptFunction (double eps=0.01)
 Constructor. More...
 
- Protected Attributes inherited from goMath::BarrierOptFunction< matrix_type, vector_type >
goAutoPtr< OptProblem< matrix_type, vector_type > > myProblem
 
vector_type myBufferGrad
 
matrix_type myBufferHess
 
value_type my_t
 

Member Function Documentation

◆ barrier()

template<class matrix_type , class vector_type >
virtual value_type goMath::BarrierOptFunctionPhase1< matrix_type, vector_type >::barrier ( const vector_type x_s)
inlinevirtual

Barrier function $ \Phi $.

Calculates the barrier function

\[ \Phi(x,s) = -\sum_{i=1}^{m} \log (-f_i(x) + s) \]

for all inequality constraints $ f_i(x) \leq 0 $ which obviously must be met strictly.

Parameters
x_sPoint at which to calculate $ \Phi(x,s) $. The last entry of vector x_s is s.

Reimplemented from goMath::BarrierOptFunction< matrix_type, vector_type >.

◆ grad()

template<class matrix_type , class vector_type >
virtual void goMath::BarrierOptFunctionPhase1< matrix_type, vector_type >::grad ( vector_type x,
vector_type ret 
)
inlinevirtual

Calculate the gradient of f at x.

Does a numerical approximation with forward differences. Re-implement for specialisations.

Note
x is modified during the call, but restored when the call returns.
Parameters
xPoint at which to calculate the gradient
retContains $\nabla f(x)$ on return

Reimplemented from goMath::BarrierOptFunction< matrix_type, vector_type >.

◆ hessian()

template<class matrix_type , class vector_type >
virtual void goMath::BarrierOptFunctionPhase1< matrix_type, vector_type >::hessian ( vector_type x,
matrix_type &  ret 
)
inlinevirtual

Calculate the Hessian of f at x.

Does a numerical approximation with forward differences. Re-implement for specialisations.

Note
x is modified during the call, but restored when the call returns.
Parameters
xPoint at which to calculate the Hessian
retContains $H(f(x))$ on return

Reimplemented from goMath::OptFunction< matrix_type, vector_type >.

◆ operator()()

template<class matrix_type , class vector_type >
virtual value_type goMath::BarrierOptFunctionPhase1< matrix_type, vector_type >::operator() ( const vector_type x_s)
inlinevirtual

Calculate $ t \cdot s + \Phi(x) $.

See also
barrier()

$ f(x) $ is the original function to be minimised, $ \Phi(x) $ is the log barrier.

Returns
$ t \cdot f(x) + \Phi(x) $

Reimplemented from goMath::BarrierOptFunction< matrix_type, vector_type >.


The documentation for this class was generated from the following file: